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1. INTRODUCTION

In-the introductory chapter, we-provided evidence that dynamics and evolution are not
widely studied in Social Network Analysis. In most fields, collection of longitudinal
social networks data requires large resources and is very time consuming. In addition,
analyses ‘of social networks' réquire tHeir own' methods. 'Since mutual ‘dependencies
exist betweenactors arid*Hétween ties in'social ‘networks, most: standard statistical
methods Cannot b applied straiphtforwardly in social’ network ‘studies. As'a conse-
quence, sécial nétwork researchers have to rely on specific social nétwork methods and
measures. Becaise 'of the ‘statistical complexity involved, most of them are limited for
comparisons betweéen networks of different sizes and densitiés and can be -applied
mainly applied in descriptive analyses only. Within this setting it is not surprising that
most efforts are focussed on analyses of static network structures. The compendium
of ‘Wasserman and Faust (1994) and the strongly improved and extended standard
computer package UCINET indicate that the social network field is now mature enough

"We thank Evelien Zeggelink, Bill Batchelder, and Henk Hangyi for their comments on an earlier draft.
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TABLE
Network Evolution Processes in Chapters

Chapter Authors Process
6 Doreian, Effects of network structure on changes in friendship choices:
Kapuscinski, - reciprocity
Krackhardy, — transitivity
Szezypula - balance
10 Banks, Network completion models: Parameter estimation
Carley
4 Skvoretz, Emergénce of dominatice structures through:
Faust, ‘victim® effect.and ‘bystander’ effect
Fararo ' '
7 1eenders Emergence of (best) friendship ties based on: similarity of

individual characteristics versus reciprocity

8 Leenders Effects of simultaneous occurence of: contagion and selection
based on similarity E o

3 . .Zepgelink, .. Emergence of friendship netwarks, based on: desired number of

.o Stokman, . friends and subgroup membership., ..., .

f
i ! Lay

ot gt Nan deoBunt. . .
B, e Eeigeice of e i prodution g
| Macy T approval dgainst boiplinned Versus dppraval ofint pprbval
5. on. oo Swlkman, ... . - Emergence of influenge relations in policy network based on: .-
Zegpelink power versus policy driven motives : :
9 Saijders Parameter estimation of wtility derived network characteristics:
~ reciprocity ‘ e
— balance

to go deep and to turn to more difficult questions of dynamics and evolution. This state
of the art justifies the emphasis of the present book: to indicate some of the paths to
follow rather than focusing on substantive dynamic and evolutionary results in diﬁ’erent
fields of application. While we have defined our focus in terms of techniques, tools
and approaches, we believe that, for specific topics, substance is critical. Consequently,
all contributions provide important substantive insights into the development of net-
work structures in different empirical settings. To rephrase our intent, we are suggesting
ideas that can be mobilized usefully within different applications.
We argued in the introductory chapter that dynamics is a broader concept than
evolution. Whereas dynamics refers to change and is, in the main, purely descriptive,
evolution includes explanations of dynamics. The latter refers to underlying processes
that generate the dynamics in social networks. For this reason we first focus on the
types of processes presented in the different chapters. See Table 1. '
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Evolution in social networks can, of course, be seen as a special case of evolutionary
processes in social systems in general. Social network evolution studies might well
profit from more general approaches to social evolution in computer science and
artificial intelligence. From the latter, we will extract some basic principles of social
evolution. We will consider the extent to which social network evolution studies do
include such principles and, if they do not, how they can profit from the inclusion of
these principles. This will lead us directly to a research agenda for future studies of
network evolution.

2. SOCIAL NETWORK EVOLUTION PROCESSES

In many social network evolution studies, the underlying process for network change
is assumed to be located in the network structure. In its most simplified form, this
approach can be described as follows. Empirical social network studies show repeatedly
certain network characteristics. In social network evolution studies, these characteristics
are then taken as tendencies from which network change can be explained. An exampie
of this approach can be found in the contribution of Doreian, Kapuscinski, Krackhardt
and Szezypula (Chapter 6). In directed choice networks, the degreé of reciprocity of
choices is an-important network characteristic, Empirical studies-of friendship choices
repeatedly report levels-oFreciprocity well above chance levels. If 'we stidy networks
over time, can we explain‘iietwork chanpes from a: tendency towards reciprocity of
friendship choices?-A! similar line' of ‘reasoning'is followsd: for ‘other itnptrtiit chars
abtetisties' of ‘empirical ehibice netwoiks Tike transitivity-and grolip’ blanes" Doteian
etial apply thiesé ideas'ed' thie Néwcomb fraterhity datd (NEwCorib;-1961); They stiow
tﬁﬁﬁ-mﬁiﬁtﬁﬁityﬁiﬁ"wéufﬁw&h’aﬁbé:1é\‘f'el"ﬁﬁﬁtb‘éfﬁéf‘jibtiginniﬁ'g’f-liiif-'ddés~iibt-‘intl‘eas‘e'
overtitne: I ‘sharp contakti ‘tranditivity of choices iifitially is aotabove chance lavels
but ifcreases ' substititially? over the first eight-weéeks, and reminins constant at a’high
level afterwards. Alsothie degree of balance tends to increase over time. One important
result from' this study is that different network phenomena can operate with different
timescales in the’ safme social collectivity. In addition, the study provides a pew
methodology for assigning values to rankings that maximize certain network charac-
teristics(&:p. reciprocity ‘of-relations). ' e '

+'In"contemporaiy ‘Soiology; much attention is-given to the micro-macro lnk. Fre-
quently, social phetiotiens  ate explained as the result of goalériented behavior of
individugls: Simultanectisly; the social context provides opportunities for action to some
actors while impeding the actions of others, Questions on the micro-macro link become
more laden with ‘meading"if individuals act as. representatives of more complex social
entities such as organizations. Sometimes it is possible to treat these social entities as
unitary actors with their own goals and restrictions while in more complex situations,
structures with hierarchies or partially overlapping social entities (including the indi-
viduals that represent them) have to be considered. The concept “social actors” includes
both individuals and higher order social entities. Social actors are the active elements
in social systems with social phenomena resulting from the choices they make. Social

’By the third week, the amount of transitivity is significantly greater than zero.
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network “structure” is one of them. If studies locate the underlying process of social
network change within the network structure, it is unclear, however, whether the
researchers can interpret these network characteristics as goals pursued by social actors,
If this is assumed, a theorist must consider the amount of information that network
members (actors) need in order to pursue such goals. Reciprocity is a characteristic of
pairs, transitivity of triples, and group balance of the whole network. The higher the
level of the network characteristic, the more complex the information actors need to
take into account.? For example, group balance as a goal requires information on all
network relations and the ability of network members to determine the consequences -
of alternative choices for group balance. An additional problem is that optimization of
a certain network characteristic' can’ be ‘obtained by different ‘choices: (For a'more:
extensive .discussion see Zeggelink, 1993.) For example, triples can often become
(more) transitive by adding or removing choices, Moreover, the effect, on the Bpetwork
characteristic depends on the order of the changes made. An asymmetric choice from
a to b can be transformed into a symmetric relation by a choice.from b:,;tq-._q;gri-_by,-.-_‘,
withdrawal of the choice. If they do so simultaneously, the resuls is;again an asymmetric
relation, with the ties: now going from & to a. Some models try to circumvent these
problems by restricting the scope of the actions to addition of new; ties. The embsyo:
network completion models of Banks and Carley (Chapter 10) provide examples.of thig
However, we, note, as do Banks and,Carley, that.the withdrawal of .choices. is, a1
alternative. fiequently, observed in reality and: should-not.beneglected. Moreoyer, -
problemsaxise;as: the completely,connected network:is the asymptotic; equilibriy
most of these. models, Iniother;words, at equilibsinm, allnetwork/members,arg e qy
- likely to-intevactiwith all others; This ¢ a, consequence’s th
do not include’ restrictions on,sdcialiastors/and theingeneration; of network fes. Difs
ferences in restrictions affect choices actors make and should be included as an element
in any explanation of social phenomena.* Undoubtedly, later versions of the Banks and
Carley models will incorporate these restrictions on social actors.. ol
In the contribution by Skvoretz, Faust; and Fararo,-(Chapter .4) the emergence .of
dorninance structures is explained by two mechanisms. If a network member “attacks”
another network member, a dominance relation from the attacker to the victim is created
with a certain likelihood. This is the “victim” effect. Other dominance relations result
from the “bystander” effect. They assume a cognitive process in which bystanders tend
to dominate the victim and to form a deference orientation to the attacker (and the
attacker a dominance orientation to the bystander). They demonstrate that the bystander -
effect is a necessary condition for hierarchical structures to be formed.
Although the Skvoretz et al. model includes a more complex cognitive part than the
former models, network structure is again the explanatory variable. Who is attacking -
whom is not related to individual characteristics and network members are not seen ;
as purposive. The underlying process is assumed to be the adoption of expectational
orientations towards one another and not a network characteristic to be optimized. The -
orientation is adopted on the basis of simple information, but they assume that all attacks
are observed by all other network members.

We do not rule out processes that are operative at the proup level,

*Similarly, Willer and Willer (1995) show that dynamizing Network Exchange Theory results in futly
connected networks of equal power for all if no restrictions on the addition of links are introduced,
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In other social network evolution studies, the underlying process for network change
is assumed to be located in characteristics of the network members. Network members
are assumed to “choose” others by comparing relevant individual characteristics of the
others with their own. A fundamental finding in many choice networks is that social
actors with similar characteristics are more often connected with one another than with
more dissimilar ones. This is known as the “similarity effect” in social networks
(Schachter, 1959). Many researchers attribute this to a selection process in which social
actors tend to choose similar others. The contribution of Leenders on “Dynamics of
Friendship and Best Friendship Choices” (Chapter 7) is an example of this approach.
His main analysis concems the relative strength of the reciprocity effect and the
similarity effect in the Hallinan class room data. Hallinan recorded “best friends” and
“friends” choices of pupils in ten classes (Hallinan, 1976, 1978). In most classes these
choices were recorded seven times with six weekly intervals. Most interesting are
Leenders’ results for the “best friends” choices. As did the original researchers, he finds
a strong reciprocity effect in the data. However, the data also show a strong similarity
effect based on gender. Hardly any “best friends” choices between boys and girls exist.
If both effects are taken into account simultaneously, the reciprocity effect. loses its
statistical significance. Reciprocity is completely explained by.the fact that pupils
choose their best ﬁicnds_ma’thin their own. gender: group.: This important substantive
result stems from Leenders! new. statistical tools for: Markovian:process. models, His
results show:that certain network;characteristics such asithe. degres of reviprocity :are
2. pofential. result. of otherunderlying,processes rather,than the:driving-mechanis
themselves. Sl e i i
1t comparison-of-individualcharacteristics: (e:g!:similarity) dtives individual choic
processes;in. certainmetwor

essesin certainetworks; models of: netwotk evolution-have:to: take inito-account
thatisomie of these individual ‘characteristics eviolve:oven time as well. We may choose
our friends:because they.are similar.to us. This is a selection process. On the other hand,
our-interaction with ‘our friends may well make us more similar to one another. This
is.a-contagion process. If frequent discussions amon g friends result in similar opinions,
similarity. of opinion does.not guide the choice pracess but is an effect of the network
structure on individual characteristics. The network is the dependent variable in the
selection process and the independent variable in the contagion process. Theoretically,
the.two effects can be separated. Contagion between two time periods implies a change
of individual characteristics between f, and f» within a constant network, selection
results-in a change:in. the.network with constant individual characteristics. In practice
however, it is difficult to separate the two effects if both are operative. Nevertheless,
if one of them isineglected, estimators of statistical parameters are seriously biased,
as Leenders shows in his second contribution {Chapter 8). Consequently, both effects
have to be taken into account in network evolution models.

So far so good, but which individual and network characteristics are important.in
which networks? Let us consider a few examples. In friendship networks similarity may
well drive the choice process, but in functional networks complementarity of resources
of other network members is likely to be more important. In friendship networks,
densely connected friendship groups provide strong friendship feelings. Such groups
emerge when choices are highly transitive. In information networks idiosyncratic positions
filling structural holes provide strong opportunities for initiative and strategic action
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(Burt, 1992). Loosely connected networks with few transitive choices contain more
strategic positions to fill and are likely to be connected with more innovative systems.
Whereas Burt associates social capital with structural holes, Coleman and Hoffer (1987)
argue that Catholic communities have larger social capital because their communities
are more densely connected than those of other groups in the United States, A densely
connected community gives more control over the behavior of children because of the
better information on their friends and school events. In one context (inpovation), sparse
networks with structural holes apparently provide social capital while in another (con-
trol) central positions in densely connected networks do this. Thus, the imiportance of
individual and network characteristics depends on the goals of the. network membeis
and the instrumental value of network links and positions for higher ordered individual
goals. Consequently, a number of network evolution:studies takes the goal structur
of the network members and the instrumental character of the network as their starting.

micro-macro ‘link: (Lindenberg, 1985; 1990a: 1993). Again, as-in:the :approach ¢
Leenders, the network is'both a dependent and an independent variable, but now detail
of the micro element:are unfolded. - oo o o
« o' This volume containsseveral examples of this-approach to sacial network: evoliitioi;
They: alb rely:heavily:on computér:simulation;to investigate: the implicationisiof the
retical assumptions on the evolving network strneture anid the efféets on otheroteos
-Ili‘ithe':cbnt'ribt’z’tion:'oi"-Eeggelink'-,-':‘Sf{')k;nan;?ﬁﬂdiaﬂ?t_iETBifﬁbdﬁ%ﬂi&'ﬁhjétgﬁﬁﬁﬁéﬁﬁi‘ﬁﬁ
ine the: evolutiohrnf‘-friendship;ﬂethfksu(Ghﬂptéﬁ':?r}ﬁthe'rtg'oal'-'rftmciimrf:bff-thef network
members consists 'of two componentsi‘The first is defined by an actor’s desired numb ;
of friends. If the number of friends is smaller than the niumber desired, network members
try to reduce the resulting tension (or. utility. loss) by establishing new friendship
relations. ‘The- desired: number of friends is. the basic goal that drives the network
formation in all friendship models of Zeggelink (1993). Other goals may enter into the -
goal function as well, such as similarity of certain individual characteristics. Inthatcase,
friendships with similar friends are considered to be more rewarding than friendships
with dissimilar friends. Friendships with similar friends give, therefore, a larger tension
reduction than friendships with dissimilar friends. The effects of such an additional
component are investigated by comparing the resulting simulated networks with those .
of the basic model where the desired number of friendships is the sole postulated goal
(Zeggelink, 1995). In this volume, the secord component in the tension (or utility)
function is not similarity of friends but membership in a friendship subgroup. Such
subgroups emerge “accidentally”. Once formed, friendship relations within the sub-
group are more rewarding than ones with members outside the subgroup. Therefore,
members of subgroups try to keep their subgroup alive and attemnpt to extend it without
losing its defining characteristics. One of their simulation results is that more persons
succeed in establishing their optimal number of friendships under the basic model than
under the model that includes subgroup membership. In particular, non-subgroup members
have difficulties finding enough friends. Moreover, subgroups survive better in larger
populations.
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Since Zeggelink et al. consider friendship as an intrinsic goal of network members,
friendship relations are not instrumental for the attainment of other individual goals in
their models. As a consequence, their main results concemn systematic variations in
network structures under different assumptions and their effects on the success of
network members to obtain their desired number of friends. In sharp contrast, the
contribution of Flache and Macy (Chapter 2) focuses on the instrumental value of
informal networks for compliance with group obligations. They challenge the frequently
found empirical relation between density of informal networks and compliance. Fol-
lowing Homans (1950), exchange theorists have explained this positive correlation as
an exchange of peer approval for compliance. Flache and Macy rightly state that these
exchange theorists overlook the possibility that network members might well exchange
approval for approval. Informal network ties then obtain intrinsic value (as in the
Zeggelink et al. models). They are no longer instrumental to an external goal (like
compliance)} and may even impede compliance to group obligations.

To investigate the validity of these assumptions, they formulate a general model in
which actors make two types of choices. First, the actors decide whether to work hard
or not, based on work satisfaction. Work satisfaction depends on net benefits of both
work and approval from others. Subsequently they decide which other actors to approve
or not. The-decision to approve another.actor depends on the net benefits of both his
or her work efforts.and of the other’s approval to.the decision maker. The latter is not

included iy Homan'sioriginal exchinge mode] of approval against compliance. Homans®
model is aispecialicase of the more:general:model of Fache and Macy, the net benefits
oﬁ't&e&:nthen‘;s{apﬁévahﬁaingfm.-;-Since-.-actors ‘make.theseidecisions simultaneousty;
the ‘effects:of:théir choices are/ quite:uncertdin: Conséquently,: thiey:ledrn .on the basis
of: pastiexperiences::Although Flache. and Macy’s simulation-restilts-confirm that ex-
chaiige.of: approval:for:approval indeed can:impede compliance to group obligations,
they do ot refute: the often: reported empirical association between compliance and
cohesion. They demohstrate that the effect of approval on compliance is nonmonotonic,
depending on the relative’ valués of approval and compliance. Peer pressure can well
block:compliance, especially when the cost of compliance is high relative to the value
of approval: If. not; the need of approval increases compliance considerably, but stili
to a level well below: what would be expected if members exchanged approval solely
for compliance.

+In-the contribution of Stokman and Zeggelink on policy networks (Chapter 5) re-
lations are seen as-instrumental for obtaining outcomes of collective decisions close
to- preferred. outcomes. In policy networks, typically, a small number of actors are
entitled to make the final decisions. Before a final decision, interested actors, in general,
try to influence each other’s preferences. Such an influence process requires access to
other actors and effective resources. Typical resources are expertise, prestige in the field
and resources indispensable for implementating decisions. Stokman and Zeggelink
simulate the emerging influence relations among actors and their effect on outcomes
of decisions. To this end, they assume a very simple decision and influence process.
The final outcome of a decision is the mean of the preferences of the final decision
makers at the moment of the vote, wei ghted by their voting power. Influence takes place
through access relations. Access from actor i to actor jis established by an access request
of actor 7 that is accepted by ;. Access relations result in adapted preferences of actors.
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The new preference of an actor i is the weighted mean of i’s own preference and those
of all actors with access to / at that moment. The weights of the actors depend on their
resources and interest in the decision.
Access relations require time and resources. Actors therefore are assumed to be
restricted in the number of access requests they can make and the number of such .
requests they can accept. Moreover, due to incomplete information and simultaneous
actions by other actors, actors have to make simplifying assumptions and leam by .
experience. Stokman and Zeggelink evaluate different models corresponding to differ: :
ent views of politics. The model with the best predicted outcomes of decisions is policy
driven. This'model results also in networks with many similar structural characteristics
as the -empirical network. In this model, actors are confronted with two counteracting
forces in their choice of which access requests to make. On the one hand, they realizé
that powerful actors with distant and opposite views are most/attractive as targets; I
successful, an access:relation-to such an actor will greatly-affect the outcomes’ of
decisions. On the other hand, actors realize that these ‘actors are less likely toracce
access requests than-actors with more proximate preferences: Actors realize that othi
actors act in a similar way as they do themselves: they give high:priority to-accessand
thereby influence from like-minded other actors. Only if sitch-actors-are; not presen
are they willing to accept influence from more distant actors, Consequentially, actor
select influence purposively to.“bolster” their own. position.: This<prevénts them: fror
changing their own:preferences while {rying:toinflilence other actors toido so::
«{In all theee ‘individual: ‘godlsoriented contiibutions; fietworks "Iifé‘-éﬁ,é’;:'ziusé “Act
sij’mﬂfa‘nédu_‘slj&?_dpﬁmiz‘&tﬁéiﬁs‘hétﬁzmkezeﬁitidﬁéﬁfiﬁﬁﬁﬁt;l_IE tHavefull informiltio
the! present; dsiboth Zeggelinkiet/ aland Flache. ad/Macy asstmte, thieiéffects fofthe;r
¢hoices may: istrongly: ‘deviiite’ froniy their! ‘;_ténﬁo'nfs;f‘{rhﬁiid;tn'fthéiéiiiiﬂltziiieﬁii's;'"éHﬁi_é 4
of othersithe -.‘.;‘;‘J‘r'e's__e'nt":‘-h’asvheenfchaﬁg’c'c'l"ﬁefbié their own actions Have conie into effe
In’ other. words, the-présentisithe wrong:sitation to be- optimized'and others’ choicé
should be anticipated. Such: optimization problems are magnified by incomplete infor
mation, Forward:looking: analytic solutions may be impossible in these sitnations, for
actors as well-as for modelers. The principles of learning from past experience (Macy; :
1990; 1991) and imitating successful others (Heckatho » 1995) become increasingly
important and can very well be applied to social network evolution, as these two
contributions show.
If we want to confront the results of such dynamic simulation models with empirical -
data, longitudinal data sets and adequate statistical tools are indispensable. The over-
view in the introductory chapter showed that the former dre not widely available.
Moreover, very few longitudinal data sets are reported in the literature that are available
for secondary analysis and contain both changes in network ties and network effects
such as changing individual characteristics.’ -
The contribution of Snijders in the present volume (Chapter 9) is a major step towards
developing adequate statistical tools. The tool presented is designed to test models of
simultaneously acting goal oriented actors. As in the Stokman and Zeggelink contri-
bution, actors are assumed to be unable to optimize their utility function directly because

*Some data sets with these properties are being developed.
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dations ‘we stress: the” importance: of ‘taking -seriously - the: decentealized /aiid: paralle]
optimization processes in.sotial:systems. In computer.scierice aud‘afuﬁmé]mtelhgehce
we"ﬁ,nd?ami:mbei-:6frsimﬂar-'é;ibrbachesfthatim aimed atmiodeling daceitialized paralisl
optimization’ pioe ﬁ%@?ﬂiese*;’appwaches=.s&e‘ssfﬁ’imﬂéf?pﬁn&iples‘rékwe'-:ﬁave"ﬁséewiﬁ
thisivolums: te’ otiersi We consider: thernag recommentntions: for fitute b
tensions. OF patictdirinteiest nre four approachesy object-orientéd models; distributed
artificial intellipence; callular: auntomata; and neural'networks, . sl
- Stokman and Van' Qosten (1994) and Zepgelink (1993, 1994) stress the striking
similarities in the principles of object: oriented modeling and structural individualism,
The most important characteristic of social processes is that the outcomes of “macro”
processes are not simply the result of g central' (planning) authority. Rather; utcomes

individualistic approach(Wippler, 1978; Boudon and Bourricaud, 1982;:Lindenberg,
1985; Coleman, 1986;: 1990). Object-oriented modeling makes it possible to arrive at
a direct representation of such a physical world of paraliel operating actors (Goldberg
and Robson, 1983). In object-oriented models, these actors are represented by objects.
These objects have an internal structure which enables them to reason and to commu-

restrictions under which they operate, and may be adapted on the basis of past expe-
riences (Lehrmann Madsen and Moller-Pedersen, 1988). The characteristics of social
Systems emphasized in the structura) individualistic approach (parallel, operating under
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different restrictions, self learning, and actors reacting to each other on the basis of
which social phenomena develop) have their direct equivalents in object-oriented models.
Similar parallels exist between the structural individualistic approach and distributed
artificial intelligence (DAI), DAI systems aim to represent systems with ANy agents
that interact to achieve some goals regardiess of whether these goals are their own or
not. Cooperation is necessary to achieve these goals and cooperation requires commu-
nication and conflict resolution through negotiation (Wemer and Demazeauy, 1992);
Doran (1989) even claims that a similar relationship . between DAT and the social
sciences exists as that between AT and psychology. Several applications of Carley (1986}
1992) can be seen as DAI representations of social systems. T L
Cellular:automata (CA) were introduced by Von Neumann. and Ulam:in:the late -
forties (see Von Neumann, '1966) as a representation of life and self-reproduction, CA
can be seen asa simple DAI system. Automata are represented as cellsin acheckerboard;
Cells car be in different states, e.g. alive or dead as in Conway’s “game of life’!, [The
state of a cell in the next time step depends on its own present state and the. presen
states of all jts surrounding cells (neighb
applicatiofis. In Conway's game n Fap
cations it may well be confined to the four cells in the horizontal and vertical directions
or extended to a larger area. In this game a living cell will stay alive in the next. eri
if and only if it:has two. or three living, neighbors., Otherwise. it. will.di
overcrowding: or, loneliness.. A dead,cell will change,i iving i
it has,exactly three living. neighbors. ...« .
wConway's game of life attracted much attentionsin seottherich,emer
structures:; some are:stable; while others:move:across.the. ¢ ckerboard:(Hegsels

Skt ata gl

1996).CA are nowadaysused in-many discipline

_ _ 3 torepresent dynamicJocal processes;
(For-a classification and,overview. see.Wolfram,»1984), In the.social-sciences, they are
typically used to-model social dynamics due to.contagion; and: migration, In CA cons
tagion models, automata (cells) cannot move..Jn CA. migration models, antomata. can
move to other cells if they are dissatisfied with their neighborhood. The emphasis lies
on problems of self-organization. How can we explain the emergence of social order
without the existence of central authorities? - : ,

In CA models, social structures typically emerge in thousands of iterations. Nowak
et al. (1990), Nowak and Latané (1994), Latané et al. (1994) investigate the emergence .
of clusters and polarization through contagion. Starting with random distributions of
attitudes among the cells on the checkerboard, they show how minorities can survive
by the emergence of clusters of similarly thinking persons. Survival of minorities and
polarization of attitudes and opinions can be explained by the transformation of indi-
vidual attitudes and opinions into socially organized attitudes and opinions within a
social space. Nowak et al. (1996) give very convincing empirical evidence of this
mechanism in post-communist Poland. Economic development and preferences for non-
communist parties go hand in hand and emerge as regional clusters.

Hegselmann (1994; 1996) developed a CA migration model to explain the emergence
of solidarity among selfish persons with different needs for help. If persons are dis-
satisfied with the help they can expect from their neighbors, they can move to a new
neighborhood with better possibilities. These improved possibilities depend on the
ability and willingness of neighbors to help. Starting from random distributions of
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persons in different help categories, he shows the emergence of spatial clusters of
persons in the same or adjacent help categories. The most and least healthy persons
experience most difficulties in finding help. The first because the are not willing to help
others, the latter because they are unable to help others.

Hegselmann (1996) based the adequacy of CA to model social systems on many
points of similarity between CA and social dynamics. Cells, as basic units, correspond
to the individuals as the basic units in a society. Cells can be in different states and
individuals can choose between alternatives or adopt certain attitudes. The state of a
cell affects the state of its neighbors as individuals affect each other mutually. Both
in CA and social systems, this interdependence is local and based on local information
only. Neighborhoods are overlapping as social interactions have an overlapping struc-
ture. CA applications in mathematics and natural sciences aim at modeling the emer-
gence of order and dynamic processes that explain macro effects from micro rules,
Social scientists have similar aims regarding social order and dynamics.

Our main concern with CA is the simple structure assumed by these models. In most
applications, neighborhoods have equal sizes for each cell. If we would apply the same
CA contagion principles to social networks, neighborhoods and their overlap can vary
systematically across. actors.. Similarly, the strength of ‘contagion can be varied by
assigning -weights to (not :necessarily symimetric) relations between actors: If social
network contagion, models would incorporate the other principles of @A models, they
would: take: the  distributed..and .local character. of information- and -contagion. more
saxit}usly,:?()z;;tpp;ﬂﬂwl?h_and.:-s.uch::S‘ocigl-netw_o - contagion models could-incorporate
Cﬂntagiﬂn::pmqg.ss_es;.bath;.througha communication and.social.comparison,: CA-models
do; not.differentiate: thesetwo.processes; and that:both! operate is well known from:the
sqci:al-gpﬂtw_ htﬁ,ifa't_t,lra:}?iln»addition. CA:migrationimodels:can be‘replaced by, social
hetwork: selection.models.; This: all would. pave, the way towards systematic research
into self-organization'processes in social networks. :

- Although: CA. aim to model distributed processes, they usually do not represent

Parallelism is.one of the main features of artificial neural network models {Rumelhart
and_r'-;'MQC}Iellaqd,--31986; Gallant, 1994).7 An artificial neural network consists of a
number-of:neurons each: with.a very simple internal state where a single value of a
variable:represents its -activity level. Neurons are connected to each other and the
envitonment by means.of directed. or undirected connections. Through these connec-
tions, - neurons. receive :influence from the environment and influence each other’s
activity level and the environment.

-Another:main feature of a neural network model is its learning capacity. The most
widely applied neural network models are based on supervised learning models in which
a central target is specified. The learning process consists of the adaptation of both the

81.eenders ( 1995) shows that it is very difficult to distinguish the two in empirical research. He convincingly
shows that it would be false to equate contagion through communication with cohesion and coatagion through
social comparison with (structural) equivalence as some researchers do.

"Neural network applications on single processor computers also use, sometimes, random selection proce-
dures instead of parallel ones. We argue, below, that social processes are often parallel and it is vital 10
represent them as such,
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weights of the connections and the activity levels of the neurons until the output of
the neural network matches the target. Neurons only learn by using information received
through their connections with other neurons or the environment. This information is
used to determine whether their activity level and strengths of incoming connections
are appropriate. If not, both are adapted in two different subprocesses. In the first, the
activity level is adapted through incoming signals from other neurons and the environ-
ment. Thus, the structure of connections determines the activity level of the neurons.
In the second subprocess, nenrons evaluate the incoming signals in order to distinguish
profitable from unprofitable connections. This results in the strengthening of profitable
connections and the weakening of unprofitable ones. Optimization takes place therefore
at the level of the neurons in view of targets at the network level.®. This makes neuiral
network models with supervised learning particularly interesting for social systems
where such central targets can be assumed, as in orgamizations,” - v o o

More interesting for social network modeling are the more experimental unsupervised.
learning models. In these models no feedback on performance-is'available as'there are
no criteria to distinguish correct from wrong answers. The:most thiat can be‘expect
from these models is the construction of groups of similar:input patterns; known’
clustering and used for pattern recognition. For example; Balakrishnan et al; (1994
compare neural network solutions with a traditional clustering method (K-means) on
simulated data with known cluster solutions. For social science applications themos
interesting result is the emerging structure among the neuronsas s’ represeitationc
a self-organizing social-network. Ossipow and Ritschard ' (1993)apply’ Kohos
unsupervised learning mddel for theistirdy: of parliamentary: debate; The netrom:tha
most sensitive: to' a given.input becomes'dn: attractor: This imeans' thatithe ¢alls in
neighborhood of this neuron:tend:to modify: their owh. sensitivities: by imitating 'the
of the attracton:A more‘extensive introduction to attractor ‘neural network: models-ax
their value as models of social dynamics'is given in Nowak:(1996). B

The major difference between neurons and social actors is the more complex structure
of the latter. Stokman et al. (1994) see four main differences in-the behavior of neuron: _
and social actors: (1) social actors have more alternative actions to choose from; (2) -
social actors have more learning strategies, in particular they do not solely learn from
past experience but also from imitating successful others; (3) social actors have limited
resources and can consequently interact only with a limited number of others and (4)
interactions between social actors are, in general, only effective when both sides agree
on the interaction. Nevertheless, models of social network evolution could profit from
the inclusion of the main principles of neural networks. First, it will result in the
representation of the paralle! nature of social processes with its far reaching conse-
quences for the optimization of social actors. Second, social network evolution models
will incorporate learning models based on local and incomplete information only. Third,
they will include the basic idea that evolution involves both changes in characteristics
of social actors and in tie strengths.

We now summarize the main guiding principles we recommend for future social
network evolution studies. See Table 2.

®Neurons can learn in both unsupervised and supervised models.
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TABLE 2
Principies of Social Network Evolution Models
Basic Principles Derived Guidelines
Instrumental value of network ties for social actors Analysis of goal structure of social acters
Partial and local information only — Adaptive learning by experience and
. imitation
Parallel optimizing social actors — Emergence of tes requires decisions by

two actoss {e.g. request and acceptance)

Simple models — priority for apalytic solutions above
simulation
— adding complexity stepwise

estimating parameters and testing goodness-
of-fit by combining:
Sufficient empirical references - controlled experiments
— longitudinal data collection
~ statistical models

R

The first guiding prificiple is'that thie instrumental character of the network should
be taken as.the’ startingcpeintfor-modeling ‘network-evolution; Network tes, like
friendship ties; canHave:inttinsic valie: Their value can also be'relatedito external goals
offmdmdual j‘actnni 'like goess; toimportant resources of otheriactors: (for example

matic ; “Alst 'thenr valile can be relatedf to!:hezr eﬁectun collectzve

-_ gg'éhilk éontrxbutmn“’ﬁha prmcxple ‘requires, tﬁarefore athe elabora—r
’ trifcture:of theinetwork meémbitrs; Lindenberg’s elaboratiofi-of the
homo' soet ortiicnss andv§ocial-production  functions: might ' be: ‘helpful -in this
respect (Lindénbers;11990b; 1985:71990s). At the highest level of abstraction, actors
are assumed’ to have monotonically increasing utility functions related to universal
goals, like:physical’ well+being -and: social approval. Actors have, however, different
ifstrumental preférences -for: the means. that lead to the uitimate goals (Lindenberg,
1990b:: 7411)’-%Exampies ofinsttumental goals in different settings are compliance and
approvalin me'Flache/Macy and'collective decision outcomes in the Stokman/Zeggelink
contributions: The first cdn:still:be:modeled by monotonically-increasing utility func-
tions;: but thelittércannot: Whereas one decision outcome can produce social ‘well-
being or social approval forone set of people, another cutcome can be better for others.
In- other words, eachsctor orders outcomes in terms of the contribution the outcome
makes to the actor’s niversal goils:? If more goals are simultaneously involved, such
as approval and compliance or several'decisions, the relative importance of the goals
may well vary systematically from actor to'actor. Salience is introduced for that purpose

These outcomes are not necessarily dichotomous, like pro or con, but may well consist of a certain amount
of an ountcome, for example, the size of a budget or the height of a new building,

10We acknowledge that some actors may have global knowledge and there may be processes operative at
the network level. Even so, it seems that for understanding actors” action and the structural consequences
of those actions, it is more appropriate to assume actors act with local information.
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in the Stokman/Zeggelink mode! where the different goals are subsequently combined
into one utility function.

The second basic principle we recommend deals with the information social actors
possess. We advocate models in which actors optimize based on local information
only.!? None of the contributions in this volume incorporates that idea systematically.
It would open, however, important new perspectives and raise new questions such as:
Can higher levels of reciprocity in larger groups simply be explained by local visibility
(see Doreian et al. in Chapter 6 and Leenders in Chapter 7)? What are the bystander
effects for the emergence of dominance structures in larger groups when attacks are.
solely abserved by actors in the direct neighborhood (see Skvoretz et al, in Chaptéf:
4)? What are the effects of approval on compliance if we can observe compliance solely
in our neighborhood (see Flache/Macy in Chapter 2)? What effects would this have
on the structire of the approval network? Would we observe. similar forms of self-
organization as CA models show, for example in the form of complying islands? If we
would know the policy positions and saliences only in our (policy) neighborhood and:
have to guess those of our adversaries, which effects would that have on the emergenc
of access relations and outcomes of decisions? These questions may even be extended
to the important question of the delivery of sincere and strategic information if we have’
to rely on information of others (Stokman and Stokman, 1995).c <+ ..o

~As we stated before, even with full information:the:rationality. of social acters: i
seriously -hampered by.the fact that.actors ‘optimize:simultaneously. iThis:implies:tha
their:xationally: chosemalternatives may appear; to’ be suboptimilibécauseithéydid ng
anticipate -the -aotions:of «otheriactafs at all-or:infa properawdy:iFor this réasonsw
recommend the;inclusionaoﬁpamneﬂm-.ib.:sbjtial'netwoikrevdlutipi;}mqgjeléiasat_he;-'thifd
basie principle. .Pamllelism;andrlimited-log:al‘fiﬁfonﬁatiﬁns(certaiﬂlggi;rébmbiﬂntibmm
each-other) have a numberof; consequences:-forsocialinetWork evolutionmodels; Firs
they make inevitable the-definition of instrumental:goals for actors that are onlyroughl
related to the ultimate instrumental. goals in:the! system (heuristics). Second, actors:
should have the capabilityto evaluate the ex. ante’ assumptions as they may ‘turn out’
to-be unrealistic ex post-(e.g. that other actors behave in a certain way). Consequently; !
actors should be able to evaluate the ultimate success of these heuristics and the
assumptions upon which they are based and actors should be abie to adapt them in case:
of frequent failure. In other words, actors should have the ability for adaptive learning.
Examples of learning from experience were given in the Flache/Macy contribution (see
also Macy, 1990; 1991; 1993) and in the one by Stokman and Zeggelink (Chapter 5).
We think it is worthwhile to consider also imitation learning models in social network
evolution models, as proposed, among others, by Axelrod (1984) and Heckathorn
(1995).1 If we would combine Heckathorn's imitation model of successful strategies
with ideas of parallel, local processes in social networks, we would likely get funda-
mentally different results. Along the lines of research into self-organization we expect
the survival of a larger variety of strategies by the emergence of local clusters. The
third consequence of parallelism is that changes take place both simultaneously and

1Genetic algorithmms is a third learning mode} that could be applied (see also Bainbridge-et al., 1994, in
their overview of artificial social intelligence), Although they are very efficient for solving a wide variety
of problems, we think that they are remote from actual learning processes in social systems,
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sequentially. This can be modeled in parallel computer processes, but it can also be
modeled by splitting network changes into two steps. In the first step, all actors make
proposals to establish relations with others (access requests). In the second step, all
actors accept the most profitable ones.!” A network relation is then the result of a request
that is accepted. Established relations subsequently induce changes in individual char-
acteristics and affect the relative strength of relations. At the collective level, the
resulting network induces a structure and, in instrumental networks, other collective
outcomes.

If the choice process of requests is more important than that of acceptance, we may
of course make the simplifying assumption that all requests are accepted. The distinction
between the request and acceptance step can also be very useful for modeling the
formation of cognitive network representations and misperceptions, for example if not
all requests are perceived. It is the actor’s cognitive representation of networks and not
the actual network that constraints his or her behavior. Moreover, systematic biases in
social perception have been demonstrated to exist (Freeman et al., 1987; Krackhardt,
1987; Kumbasar et al., 1994). It seems promising to extend these static analyses to the
emergence of cognitive structures and the leaming processes involved, making use of
the principles listed here.

The next basic principles:are more related to research strategy than to desirable
properties.of the models: We realize that the above recommendations quickly result in
complex models, Nevertheless, we strongly recommend start:mg with simple models
(the fourth basic! principle). Scientific models:do not aim to mimic. reality. Scientific
models:shoi b as:sunple as:pbssible: and-as: compiex -a8 necessary. If the . aim: s
predmno' or:explanation; thie argument:that processes in reality are more. complex or
diffe invalidate :a- model;If thé: ainwisito represent.a: process itself, it is
'mxp_,rtantt start Solely with its most characterizing kernel, The literature shows that
simple. mode s.can have quite far reaching and unintended effects (Schelling, 1978;
Coleman, 1990).‘Moreover, simple models might have analytic solutions. Such solu-
tions do not solely. prov1de stronger evidence as more complex models can often
incotporate them by using computer simulations for more complex parts. Abell (1989),
Raub and Weesie (1990), Snijders et al. (1994) are examples of innovative game
theoreﬁcal solutions within' theicontext of networks. As another example, Hegselmann
(1994, 1996) combmes analytlc game theoretical solutions with a CA simulation model.
Stepwise' add;tron of comple.my ‘makes it possible to investigate effects of each com-
plicating:step:systematically and to evaluate the resulting improvement of the model.
This method of model construction is known as the method of decreasing abstraction
(Lmdenberg, 1992).

The fifth basic principle is that the models should have sufficient empirical refer-
ences. Models should have at least testable consequences and the potential to be
falsified. Models without such references may well generate interesting ideas and
insights, but they do not contribute to well founded empirical theories of social networks
and their evolution. The latter is the aim of an empirical social science. Statistical

2The two steps from which social relations emerge points to a graph theoretical representation of social
networks by demiarcs instead of ares (Marary, 1971).




248 E N. STOKMAN AND P. DOREIAN

models are strongly prefered, as they enable the estimation of essential parameters
and to test the goodness-of-fit of the models. This principle requires at least speci-
fication of controlled experiments and types of real-life data necessary for testing, We
hope it will lead to a much larger number of longitudinal network datasets than those
presently available. Such datasets should not be confined to network changes but should
include changing individual characteristics and macro-effects when appropriate. Such
an integration of theoretical models and ernpirical testing will provoke more apphica-

tions of already existing tools and the development of new statistical models. Particu-

larly, Markov models and the dynamic versions of network autocorrelation models seem _
very useful. In these models, both the actor attributes and the structures within which

they are embedded can change (Holland and Leinhardt, 1977; Doreian, 1989;--1-990_-;
Wasserman, 1979; 1980 Leenders, 1995). Preferably, such statistical models should. be
based directly on the theoretical models and take into account the complexity-aid
mutual dependencies of social network data. Snijders et al. (1994) and the contribution

can be extended to goodness of fit tests that are also based on.comparisons of predicted
and empirical effects, both at the individual and at the macro:level. Banks and Cailey
(Chapter 10) also point towards statistical procedurcs:tfqn%'}est,imating}sncialz-netvgo_tk'
process models. T T e SR Iy

- The.implementation of the above:principles requires'a ¢lose;collaboratior ofqud
different. expertises, In part_icu_lar;.=_=it-...‘_m,quires_;a‘c:1mp;icat§f¢ijrmagbematical;u_st_z_itiaﬁ ]
computational;: sociological .and empirical :='._cqntribu_,tions-’-.a;A;:tgauyg.}jnterdiscj linary
approach: and collaboration is required. So; let.0g.do it!-u: T T P T 5%
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